Viscometric and Light Scattering Analyses of CHCl₃ Solutions of Poly(3-alkylthiophene-2,5-diyl)s

Takakazu Yamamoto,*^{,†} Dai Oguro,[†] and Kenji Kubota[‡]

Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan, and Department of Biological and Chemical Engineering, Faculty of Technology, Gunma University, Tenjincho, Kiryu, Gunma 376, Japan

Received September 7, 1995 Revised Manuscript Received December 4, 1995

Introduction

 π -Conjugated polymers have been the subject of many recent papers. ¹ Extensive studies have been especially carried out on polythiophene² and its 3-alkyl derivatives^{2c,3} because of their high chemical stability, good electrical conductivity, and other interesting properties. However, solution properties of the polymers have received much less attention. ⁴ We here report results of viscometric, GPC, and light scattering analyses of CHCl₃ solutions of fractionated poly(3-alkylthiophene-2,5-diyl), P3RTh. Several optical properties of the fractionated P3RTh are also reported.

Results and Discussion

Poly(3-alkylthiophene-2,5-diyl)s, P3RTh's, have been prepared by various methods including organometallic polycondensation of dihaloalkylthiophenes (eq 1)^{3a-e} and oxidation polymerization of alkylthiophenes (eq 2).^{3f-h}

M: Mg, Zn, Ni(0)-complex

n
$$\sim$$
 S \sim chemical or electrochemical oxidation \sim S \sim (2)

Solubility of P3RTh depends on the R group as well as the polymerization method, and P3RTh with a hexyl group, P3HexTh, has the highest solubility in CHCl₃ among P3RTh's prepared according to eq 1 using an Ni(0) complex. On the other hand, poly(3-dodecylthiophene-2,5-diyl), P3DodTh, has the highest solubility in CHCl₃ among P3RTh's prepared by the oxidation polymerization using FeCl₃ (eq 2). Other P3RTh's contained insoluble fractions (20–50 wt %) in CHCl₃.

Viscosity and Light Scattering. Table 1 summarizes GPC and light scattering (LS)⁵ results of fractionated P3HexTh(Ni) and P3DodTh(Fe), which are prepared by using the Ni(0) complex and FeCl₃, respectively. The data shown in Table 1, including M_n (number average molecular weight), M_w (weight average molecular weight), R_g (radius of gyration), and ρ_v (degree of depolarization), reveal the following features of the CHCl₃ solution of P3RTh.

[‡] Gunma University.

(i) The $M_{\rm w}$ value determined by GPC, $M_{\rm w}$ (GPC), roughly agrees with the $M_{\rm w}$ value determined by the light scattering method, $M_{\rm w}$ (LS). Better agreement of the two values is observed with P3DodTh(Fe), indicating that P3DodTh(Fe) takes an effective volume comparable to that of polystyrene. On the other hand, fractions I and II of P3HexTh(Ni) (runs 2 and 3) give $M_{\rm w}$ (GPC) considerably larger than $M_{\rm w}$ (LS), presumably due to the stiffer structure of P3HexTh(Ni). The presence of the π -conjugation system seems to make P3HexTh(Ni) more rigid and linear; however, its rigidity and linearity seem not to be as high as those observed with poly(pyridine-2,5-diyl), PPy⁶ (PPy with $M_{\rm w}$ of 3800 gives a $\rho_{\rm v}$ value of 0.33 and a $[\eta]$ value of 0.85, respectively), presumably due to the hexyl substituent in P3HexTh(Ni).

$$-\left(\left\langle \right\rangle \right)_{n}$$

PPv

(ii) P3HexTh(Ni) and P3DodTh(Fe) exhibit relatively small ρ_{v} values; however, the non-zero ρ_{v} values indicate that they do not adopt a complete random-coil structure in CHCl3. The normal R_{g} values (runs 7, 10, and 13) also indicate that the polymers do not take a rigidly linear structure.

(iii) Plot of $\log [\eta]$ ($[\eta]$ in dL g^{-1}) against $\log M$ gives the linear correlation shown in Figure 1, to give the following viscometric equations

$$[\eta] = KM^a \tag{3}$$

$$K = 2.56 \times 10^{-6}$$
 and $a = 1.14$ for P3HexTh(Ni) (4a)
$$M = M_{\rm n}({\rm GPC})$$

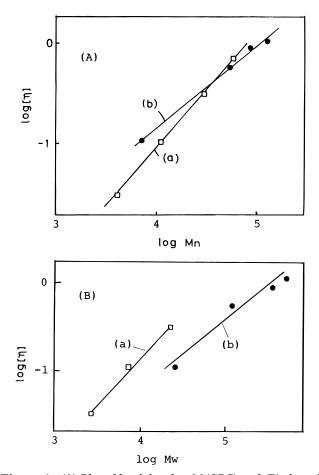
$$K = 2.82 \times 10^{-6}$$
 and $a = 1.17$ for P3HexTh(Ni) (4b)
$$M = M_w(LS)$$

$$K = 90.2 \times 10^{-6}$$
 and $a = 0.80$ for P3DodTh(Fe) (5a)
$$M = M_{\rm p}({\rm GPC})$$

$$K = 49.0 \times 10^{-6}$$
 and $a = 0.78$ for P3DodTh(Fe) (5b) $M = M_w(LS)$

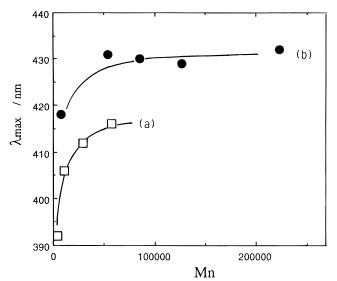
The plot of log $[\eta]$ vs log M_w determined by GPC gives the a values of 1.0 and 0.77 for P3HexTh(Ni) and P3DodTh(Fe), respectively.

Bi, Ying, and Qian reported an *a* value of 0.77 for P3HexTh prepared by the oxidation polymerization using FeCl₃.⁴ The *a* value obtained for P3DodTh(Fe) is almost the same as that reported by Qian and his coworkers. On the other hand, the larger *a* value of P3HexTh(Ni) suggests its more linear structure, and the difference between P3RTh's prepared by the two methods may be attributed to the presence of irregular units (e.g., thiophene-2,4-diyl bonding⁷) and/or branching in P3RTh prepared by the oxidation polymerization.⁴ In the case of the organometallic polycondensation (eq 1), the polymerization is considered to proceed selectively at the position of the C–X bond, and P3RTh thus prepared will not contain such irregularities.


Effect of Iodine Doping. Addition of I₂ to the CHCl₃ solution of P3HexTh(Ni) in CHCl₃ causes only a

[†] Tokyo Institute of Technology.

Table 1. GPC and Light Scattering Data of Fractionated P3HexTh(Ni) and P3DodTh(Fe)


			GPC data (x 10 ⁻³) ^a		light scattering					
run	fraction	wt %	$M_{\rm n}$	$M_{ m w}$	$M_{\rm w}/M_{\rm n}$	$M_{ m w}$ (×10 ⁻³)	$R_{\rm g}$, nm b	$\rho_{ m v}{}^c$	$[\eta]$, d dL g $^{-1}$	λ_{\max} , nm ^a
Polymer = P3HexTh(Ni)										
1	original	100	7.6	24.1	3.19					410
2	P3HexTh(Ni)-I	12.8	4.1	5.6	1.36	2.7		0.065	0.031	392
3	P3HexTh(Ni)-II	38.7	11.0	15.3	1.39	7.3		0.026	0.105	406
4	P3HexTh(Ni)-III	15.4	29.3	39.5	1.35	22		0.017	0.31	412
5	P3HexTh(Ni)-IV	1.3	e	e	e					
6	P3HexTh(Ni)-V	31.8	56.9	152	2.68				0.70	416
Polymer = P3DodTh(Fe)										
7	original	100	66	141	2.14	144	37.8	0.011		430
8	P3DodTh(Fe)-I	17.0	7.1	26.5	3.73	26.5		0.041	0.108	418
9	P3DodTh(Fe)-II	2.0	e	e	e					e
10	P3DodTh(Fe)-III	20.5	53.9	167	3.09	120	30.5	0.012	0.57	431
11	P3DodTh(Fe)-IV	20.4	85.5	151	1.76				0.89	430
12	P3DodTh(Fe)-V	3.7	e	e	e					e
13	P3DodTh(Fe)-VI	12.1	127	497	3.92	515	68.5	0.0045	1.04	429
	P3DodTh(Fe)-VII	24.4	223^e	4540^{e}	20.4^{f}					432

^a In CHCl₃. GPC data vs polystyrene are given. ^b Radium of gyration. ^c Degree of depolarization. ^d At 30 °C. ^e Not measured. ^f GPC curve shows two peaks.

Figure 1. (A) Plot of log $[\eta]$ $vs \log M_n(GPC)$ and (B) that of log $[\eta]$ $vs \log M_w(LS)$ for (a) P3HexTh(Ni) and (b) P3DodTh-(Fe). $[\eta]$ is obtained in CHCl₃ at 30 °C.

minor change in the viscosity of the solution; P3HexTh-(Ni)-V (Table 1) shows the same $[\eta]$ value in both (i) CHCl₃ and (ii) CHCl₃ containing 0.61 mol of I₂ (or 0.24 mol of I₅⁻)^{2f} per 1 mol of the 3-hexylthiophene monomer unit. The addition of iodine to P3RTh will lead to idodine doping, 2f,3d,e thus forming polymeric ion pair(s).

Figure 2. λ_{max} *vs* M_n for (a) P3HexTh(Ni) (\square) and (b) P3DodTh(Fe) (\bullet). In CHCl₃.

However, the doping essentially gives no obvious change in the viscosity of the solution. The plot of $\eta_{\rm sp}/c$ vs c is also normal without showing an increase of the $\eta_{\rm sp}/c$ values at a low c region.

The viscosity of the P3HexTh(Ni)/iodine system in CHCl₃ showed no time dependence for several hours, indicating iodine does not induce cross-linking between the polymer chains, in consistent with previously reported results.2f Addition of FeCl3 (1 mol/1 mol of monomer unit of P3HexTh(Ni)) to the CHCl₃ solution of P3HexTh(Ni)-V leads to rapid precipitation of almost all polymeric materials. The formation of the precipitate is ascribed to the p-doping (or oxidation) by FeCl₃¹ and/or cross-linking between the polymer molecules. Undoping of the black precipitate by a successive treatment with HCl-acidic methanol and a mixture of NH₄OH and methanol gives an orange (color of original P3HexTh(Ni)-V) solid. About half of the solid is unextractable with CHCl₃, indicating occurrence of the crosslinking.

 λ_{max} and Molar Absorption Coefficient. Figure 2 exhibits a plot of the λ_{max} value of P3RTh's $vs~M_n$. The leveled off λ_{max} values in Figure 2 agree with the reported values, 415 and 430 nm, for P3HexTh(Ni)^{3d} and P3DodTh(Fe), ^{3g} respectively, and the leveled off λ_{max} of

Table 2. Molar Absorption Coefficient ϵ' per the Thiophene Unit^a

run	\mathbf{compd}^b	$\epsilon'/10^3~{ m M}^{-1}~{ m cm}^{-1}$	λ_{max}	ref						
1	P3HexTh(Ni)	8.1								
2	P3DodTh(Fe)	7.8								
3	Th	$5.4 (i-C_8H_{18})^a$	232	9						
4	Th_2	$6.1 (C_6H_6)^a$	300	10						
5	Th_3	7.5^{c}	354^{c}							
6	Th_4	$8.0 (C_6H_6)^a$	391	10						
		$8.6 (C_6H_{14})^a$	385	10						
7	Th_5	$7.6 (C_6H_6)^a$	418	10						

 a In CHCl $_3$ unless otherwise noted in parentheses. b Th = thiophene; Th $_n$ = oligo(thiophene-2,5-diyl)H(C $_4$ H $_2$ S) $_n$ H. c Almost the same data (7.3 \times 10 3 M $^{-1}$ cm $^{-1}$ and 355 nm) are reported for Th $_3$ in C $_6$ H $_6$. 9

P3HexTh(Ni) appears at a shorter wavelength than that of P3HexTh⁴ prepared by the oxidation polymerization with FeCl₃ due to the higher proportion of head-to-head units contained in P3HexTh(Ni).^{3d,h}

Both P3HexTh(Ni) and P3DodTh(Fe) with $M_{\rm n}({\rm GPC})$ of larger than 1×10^4 give molar absorption coefficients ϵ' of about $8.0\times 10^3~{\rm M}^{-1}~{\rm cm}^{-1}$ per thiophene unit, respectively (Table 2).⁸ The ϵ' values of P3RTh are comparable to those of oligothiophenes, as shown in Table 2. The data shown in Table 2 indicate that the various oligo- and polythiophenes give a similar molar absorption coefficient, ϵ' , allocated to each thiophene unit.

Experimental Section

Materials. $P3RTh(Ni)^{2f,3d}$ and $P3RTh(Fe)^{3g,h}$ were prepared as reported in the literature. They were fractionated as follows.

P3HexTh(Ni):P3HexTh(Ni) (1.9 g) dispersed in hexane (500 mL) was stirred at room temperature (2 days). After the hexane-extract was condensed to 100 mL, acetone (400 mL) was added to obtain an orange suspension of P3HexTh(Ni)-III. Acetone (300 mL) was further added to the recovered solution to obtain a precipitate of P3HexTh(Ni)-II. The 1:7 mixture of hexane and acetone was evaporated to dryness to obtain P3HexTh(Ni)-I. On the other hand, the hexaneunextractable powder was extracted by hot hexane with a Soxhlet extractor to yield P3HexTh(Ni)-IV. The polymer powder was further extracted by hot CH2Cl2 with the Soxhlet extractor. Almost all of the polymer was extracted by CH₂Cl₂, and hexane (400 mL) was added to the CH2Cl2 (100 mL) solution to obtain a trace amount of a precipitate. The 1:4 mixture of CH2Cl2 and hexane was evaporated to dryness to yield P3HexTh(Ni)-V.

P3DodTh(Fe):P3DodTh(Fe) (4.2 g) dispersed in hexane (500 mL) was stirred at room temperature (ca. 20 °C; twice, 1 day for each). A red hexane solution and a black precipitate were obtained. The combined extracts were cooled to 0 °C to obtain a precipitate of P3DodTh(Fe)-II. The filtrate was evaporated to dryness to yield P3DodTh(Fe)-I.

On the other hand, the black precipitate was extracted by hot hexane with the Soxhlet extractor; reprecipitation in CH₃OH yielded P3DodTh(Fe)-III. The unextractable solid was extracted with CH₂Cl₂ (500 mL) at room temperature for 1 day with stirring and by hot CH₂Cl₂ with the Soxhlet extractor. From the combined extracts, P3DodTh(Fe)-IV was obtained by reprecipitation in CH₃OH. The unextractable part in hot CH₂Cl₂ was extracted by a 1:1 mixture (600 mL) of CH₂Cl₂ and THF at room temperature for 6 h (once) and 1 day (once), and P3DodTh(Fe)-V was obtained by reprecipitation in CH₃OH. The unextractable part was further extracted in a similar way

by a 1:4 mixture (500 mL) of CH_2Cl_2 and THF, and P3DodTh(Fe)-VI was obtained by precipitation in CH_3OH . The remaining unextractable fraction was assigned to P3DodTh(Fe)-VII, which was soluble in $CHCl_3$ and THF. These results indicate that the solubility of P3RTh increases in the following order: acetone < hexane < CH_2Cl_2 < THF, $CHCl_3$.

Measurement. [η] was measured with an Ubbelohde viscometer. Light scattering data were obtained as previously reported⁵ (laser: He–Ne laser, 632.8 nm) or by using an Otsuka DLS-700 (laser: He–Ne laser, 632.8 nm) dynamic light scattering spectrophotometer.

Acknowledgment. We are grateful to Professor Kanbara of Toyama University for helpful discussion.

References and Notes

- (a) Skotheim, T. A., Ed. Handbook of Conducting Polymers; Marcel Dekker: New York, 1986. (b) Salaneck, W. R.; Clark, D. L.; Samuelsen, E. J. E. Science and Applications of Conducting Polymers; Adam Hilger: New York, 1990. (c) Bradley, D. D. C.; Mori, Y. In Electronic Properties of Conjugated Polymers III; Kuzmany, H., Mehring, M., Roth, S., Eds.; Springer: Berlin, 1989.
- (2) (a) Yamamoto, T.; Sanechika, K.; Yamamoto, A. J. Polym. Sci., Polym. Lett. Ed. 1980, 18, 9. (b) Sanechika, K.; Yamamoto, T.; Yamamoto, A. Polym. Prepr. Jpn. 1979, 28, 966. (c) Yamamoto, T.; Sanechika, K.; Yamamoto, T. Bull. Chem. Soc. Jpn. 1983, 56, 1497 and 1503. (d) Tourillon, G.; Garnier, F. J. Electroanal. Chem. Interfacial Electrochem. 1982, 135, 173. (e) Mo, Z.; Lee, K.-B.: Moon, Y. B.; Kobayashi, M.; Heeger, A. L.; Wudl, F. Macromolecules 1985, 18, 1972. (f) Yamamoto, T.; Morita, A.; Miyazaki, Y.; Maruyama, T.; Wakayama, H.; Zhou, Z.-H.; Nakamura, Y.; Kanbara, T.; Sasaki, S.; Kubota, K. Macromolecules 1992, 25, 1214.
- (3) (a) Yamamoto, T.; Sanechika, K. Chem. Ind. (London) 1982, 301. (b) Yamamoto, T.; Sanechika, K.; Yamamoto, A. U.S. Pat. 4,521,589, 1985. (c) Elsenbaumer, R. L.; Jen, K. Y.; Oboodi, K. Synth. Met. 1986, 15, 169. (d) Miyazaki, Y.; Yamamoto, T. Synth. Met. 1994, 64, 69. (e) Chen, T.-A.; Wu, X.; Rieke, R. D. J. Am. Chem. Soc. 1995, 117, 233. (f) Horowitz, G.; Tourillon, G.; Garnier, F. J. Electrochem. Soc. 1984, 131, 151. (g) Sugimoto, R.; Takeda, S.; Yoshino, K. Chem. Express 1986, 1, 635. (h) Maior, R. M. S.; Hinkelmann, K.; Eckert, H.; Wudl, F. Macromolecules 1990, 23, 1268. (i) Berggren, M.; Inganas, O.; Gustafsson, G.; Rasmusson, J.; Anderson, M. R.; Hjertberg, T.; Wennerstrom, O. Nature 1994, 372, 444.
- (4) Bi, X.; Ying, Q.; Qian, R. Makromol. Chem. 1992, 193, 2905.
 (5) (a) Kubota, K.; Urabe, H.; Tominaga, Y.; Fujime, S. Macromolecules 1984, 17, 2096. (b) Kubota, K.; Chu, B. Biopolymers 1983, 22, 1461. (c) Zero, K.; Aharoni, S. M. Macromolecules 1987, 20, 1957. (d) Saito, N. Kobunshi Butsurigaku

(Polymer Physics); Shokabo: Tokyo, 1976; p 181.
6) Yamamoto, T.; Maruyama, T.; Zhou, Z.-H.; Ito, T.; Fukuda, T.; Yoneda, Y.; Begum, F.; Ikeda, T.; Sasaki, S.; Takezoe, H.; Fukuda, A.; Kubota, K. J. Am. Chem. Soc. 1994, 116,

- (7) (a) Hotta, S.; Hosaka, T.; Soga, M.; Shimotsuma, W. Synth. Met. **1984/1985**, 10, 95. (b) Akimoto, M.; Furukawa, Y.; Takeuchi, H.; Harada, I.; Soma, Y.; Soma, M. Ibid. **1986**, 15, 353. (c) Tanaka, K.; Shichiri, T.; Yamabe, T. Ibid. **1986**, 16, 207; 271.
- (8) P3RTh's with M_n (GPC) lower than 1 \times 10⁴ (P3HexTh(Ni)-I and P3DodTh(Fe)-I) give the ϵ' value of about 6 \times 10³ M⁻¹ cm⁻¹.
- (9) (9) Kagakubinran Kaitei Sanpan Kisohen: Maruzen, Tokyo, 1984; p I-604.
- (10) (a) Kamlet, M. J., Ed. Organic Electronic Spectral Data Vol. I; Interscience: New York, 1960; p 434, 651, and 840. (b) Sease, J. M.; Zechmeister, L. J. Am. Chem. Soc. 1947, 69, 270.

MA951340L